metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(μ -5-carboxylato-1-carboxylatomethyl-2-oxidopyridinium)- $\kappa^2 O^5: O^1;$ - $\kappa^2 O^1: O^5$ -[diaqua(phenanthroline- $\kappa^2 N, N'$)manganese(II)] dihydrate

Mei-Xiang Jiang and Yun-Long Feng*

Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China

Correspondence e-mail: sky37@zjnu.edu.cn

Received 8 May 2009; accepted 11 May 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.051; wR factor = 0.141; data-to-parameter ratio = 15.6.

The centrosymmetric binuclear title complex, $[Mn_2(C_8H_5-NO_5)_2(C_{12}H_8N_2)_2(H_2O)_4]\cdot 2H_2O$, was obtained by the reaction of manganese chloride with 5-carboxy-1-carboxymethyl-2-oxidopyridinium and 1,10-phenanthroline. The Mn^{II} atom is coordinated by two N atoms from the 1,10-phenanthroline ligand, two O atoms from two 5-carboxylato-1-carboxyl-atomethyl-2-oxidopyridinium ligands and two water molecules, leading to a distorted octahedral MnN_2O_4 environment. Intermolecular $O-H\cdots O$ hydrogen bonds link neighbouring molecules into a layer structure parallel to (001).

Related literature

For the synthesis of compounds with multicarboxylate ligands and metal centers, see: He *et al.* (2008); Huang *et al.* (2008); Jiang *et al.* (2009); Tong *et al.* (2005).

H_2O O O H_2O O H_2O H_2O

Experimental

Crystal data

[Mn₂(C₈H₅NO₅)₂(C₁₂H₈N₂)₂- $\beta = 103.553 \ (10)^{\circ}$ $(H_2O)_4]\cdot 2H_2O$ $\gamma = 110.252 (7)^{\circ}$ $M_r = 968.64$ V = 1051.1 (3) Å³ Triclinic, P1 Z = 1Mo $K\alpha$ radiation a = 7.7726 (11) Åb = 9.9519 (14) Å $\mu = 0.68 \text{ mm}^{-1}$ c = 15.411 (3) Å T = 293 K $\alpha = 98.744 (10)^{\circ}$ $0.60 \times 0.15 \times 0.10 \text{ mm}$

Data collection

Bruker APEXII area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.885, T_{max} = 0.934$

Refinement

Table 1

 $R[F^2 > 2\sigma(F^2)] = 0.051$ $wR(F^2) = 0.141$ S = 1.004779 reflections 307 parameters 9 restraints

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.81 \text{ e} \text{ Å}_{-2}^{-3}$

19359 measured reflections 4779 independent reflections

3675 reflections with $I > 2\sigma(I)$

 $\Delta \rho_{\rm min} = -0.79 \text{ e} \text{ Å}^{-3}$

 $R_{\rm int} = 0.171$

Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} 01W - H1WA \cdots 04^{i} \\ 01W - H1WB \cdots 03W^{ii} \\ 02W - H2WA \cdots 04 \\ 02W - H2WA \cdots 05 \\ 02W - H2WB \cdots 01^{iii} \\ 03W - H3WA \cdots 01 \end{array}$	0.831 (16) 0.822 (15) 0.807 (16) 0.807 (16) 0.856 (16) 0.833 (17)	1.967 (18) 1.920 (15) 1.998 (15) 2.57 (3) 1.959 (16) 1.962 (19)	2.773 (2) 2.730 (2) 2.783 (2) 2.984 (2) 2.806 (2) 2.775 (2)	163 (3) 169 (3) 164 (2) 114 (2) 170 (3) 165 (3)
Symmetry codes: (i) -x + 1, -y + 1, -z + 1.	x - 1, y, z;	(ii) - <i>x</i> +	1, -y + 2, -z	+1; (iii)

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT* (Bruker, 2006); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2783).

References

Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- He, Y. H., Feng, Y. L., Lan, Y. Z. & Wen, Y. H. (2008). Cryst. Growth Des. 8, 3586–3594.
- Huang, Y. G., Yuan, D. Q., Gong, Y. Q., Jiang, F. L. & Hong, M. C. (2008). J. Mol. Struct. 872, 99–104.
- Jiang, M. X., Feng, Y. L., He, Y. H. & Su, H. (2009). Inorg. Chim. Acta, 362, 2856–2860.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tong, M. L., Hu, S., Wang, J., Kitagawa, S. & Ng, S. W. (2005). Cryst. Growth Des. 5, 837–839.

Acta Cryst. (2009). E65, m654 [doi:10.1107/S1600536809017668]

Bis(μ -5-carboxylato-1-carboxylatomethyl-2-oxidopyridinium)- $\kappa^2 O^5: O^1; \kappa^2 O^1: O^5$ -[diaqua(phenanthroline- $\kappa^2 N, N'$)manganese(II)] dihydrate

M.-X. Jiang and Y.-L. Feng

Comment

There is intensely research on the synthesis of compounds with multicarboxylate ligands and metal centers for their potential applications and coloful coordination methods. A large number of these compounds have been synthesized (He *et al.*, 2008; Huang *et al.*, 2008; Jiang *et al.*, 2009; Tong *et al.*, 2005). As illustrated in Fig. 1, the Mn^{II} atom is coordinated by two nitrogen atoms from one 1,10-phenanthroline molecule, two oxygen atoms from two 5-carboxyl-1-carboxymethyl-2-oxidopyridinium ligands and two wate molecules. Four coordinated atoms of N2, N3, O5 and O2A constitute the base of the octahedral, whereas O1W and O2W atoms occupy the apical position. The intermolecular hydrogen bonds play an important role in the formation of the one-dimensional chain. As shown in Fig. 2. The intermolecular O—H…O hydrogen bonds link the neibouring molecules to a one-dimensional chain.

Experimental

A mixture of 0.5 mmol 5-carboxyl-1-carboxymethyl-2-oxidopyridinium, 0.5 mmol 1,10-phenanthroline and 0.5 mmol of manganese chloride in 10 ml distilled water was stirred for 30 min at 323 K, then the reaction mixture was filtered and well shaped yellow crystals of the title compound was obtained from the mother liquor by slow evaporation at room temperature for several days.

Refinement

The H atoms bonded to C atoms were positioned geometrically [aromatic C—H 0.93 Å and aliphatic C—H = 0.97 Å, $U_{iso}(H) = 1.2U_{eq}(C)$]. The H atoms bonded to O atoms were located in a difference Fourier maps and refined with O—H distance restraints of 0.85 and $U_{iso}(H) = 1.5U_{eq}(O)$.

Figures

Fig. 1. A view of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are shown at the 30% probability level [Symmetry code: (A) -x + 1, -y + 1, -z + 1].

Fig. 2. A view of the one-dimensional chain of the title compound. The O—H…O interactions are depicted by dashed lines.

Bis(μ -5-carboxylato-1-carboxylatomethyl-2-oxidopyridinium)- $\kappa^2 O^5: O^1; \kappa^2 O^1: O^5$ - [diaqua(phenanthroline- $\kappa^2 N, N'$)manganese(II)] dihydrate

Crystal data

$[Mn_2(C_8H_5NO_5)_2(C_{12}H_8N_2)_2(H_2O)_4] \cdot 2H_2O$	V = 1051.1 (3) Å ³
$M_r = 968.64$	Z = 1
Triclinic, PT	$F_{000} = 498$
Hall symbol: -P 1	$D_{\rm x} = 1.530 {\rm ~Mg} {\rm ~m}^{-3}$
<i>a</i> = 7.7726 (11) Å	Mo <i>K</i> α radiation $\lambda = 0.71073$ Å
b = 9.9519 (14) Å	$\theta = 2.8 - 27.5^{\circ}$
c = 15.411 (3) Å	$\mu = 0.68 \text{ mm}^{-1}$
$\alpha = 98.744 \ (10)^{\circ}$	T = 293 K
$\beta = 103.553 \ (10)^{\circ}$	Block, yellow
$\gamma = 110.252 \ (7)^{\circ}$	$0.60 \times 0.15 \times 0.10 \text{ mm}$

Data collection

Bruker APEXII area-detector diffractometer	4779 independent reflections
Radiation source: fine-focus sealed tube	3675 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.171$
T = 293 K	$\theta_{\text{max}} = 27.5^{\circ}$
ω scans	$\theta_{\min} = 2.8^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -10 \rightarrow 10$
$T_{\min} = 0.885, T_{\max} = 0.934$	$k = -12 \rightarrow 12$
19359 measured reflections	$l = -19 \rightarrow 20$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.051$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.141$	$w = 1/[\sigma^2(F_0^2) + (0.083P)^2 + 0.0025P]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.00	$(\Delta/\sigma)_{\text{max}} = 0.001$
4779 reflections	$\Delta \rho_{max} = 0.81 \text{ e} \text{ Å}^{-3}$
307 parameters	$\Delta \rho_{min} = -0.79 \text{ e } \text{\AA}^{-3}$
9 restraints	Extinction correction: none

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{\rm iso}*/U_{\rm eq}$ \boldsymbol{Z} х y Mn1 0.34180 (4) 0.03192 (14) 0.38197 (3) 0.24659 (2) C1 0.8430 (3) 0.9583 (2) 0.60141 (17) 0.0399 (5) H1A 0.048* 0.7365 0.9575 0.5533 H1B 0.048* 0.9335 1.0605 0.6284 C2 0.7670(3) 0.89610 (18) 0.67529 (14) 0.0334(4)C3 1.1327 (3) 0.9121(2)0.60386 (16) 0.0416(5)C4 1.2123 (3) 0.8185(2)0.56435 (17) 0.0447(5)H4 1.3421 0.5905 0.054* 0.8388 C5 1.1068 (3) 0.7009(2)0.49014 (16) 0.0397(5)H5 1.1640 0.6423 0.4663 0.048* C6 0.9079 (3) 0.44911 (15) 0.66801 (19) 0.0350 (5) C7 0.75625 (19) 0.8321(3)0.48720 (15) 0.0358(5)H70.7016 0.7344 0.4620 0.043* C8 0.7808 (3) 0.5421 (2) 0.36561 (15) 0.0363 (5) C9 -0.0500(3)0.1365 (2) 0.09487 (19) 0.0561 (7) H9 -0.06410.0926 0.1433 0.067* C10 -0.1881 (4) 0.0671 (3) 0.0077 (2) 0.0672 (9) H10 -0.2900-0.0226-0.00120.081* C11 -0.1736(3)0.1298 (2) -0.06335(19)0.0565 (7) H11 -0.26540.0839 -0.12120.068* C12 -0.0184(3)0.2654 (2) -0.04935(16)0.0413 (5) C13 0.0048 (3) 0.3422 (3) -0.11964 (18) 0.0506 (6) -0.0821 H13 0.2997 -0.17890.061* C14 0.1498 (3) 0.4747 (3) 0.0495 (6) -0.10162(17)H14 0.1607 0.5238 -0.14810.059* C15 0.2884 (3) 0.5414 (2) -0.01126 (16) 0.0405 (5) C16 0.4418 (4) 0.6812 (2) 0.01077 (19) 0.0509 (6) H16 0.061* 0.4584 0.7336 -0.0338C17 0.5659(3) 0.7382 (2) 0.09913 (19) 0.0509 (6) H17 0.6660 0.8312 0.1156 0.061* C18 0.5416 (3) 0.6564 (2) 0.16410 (17) 0.0429 (5) H18 0.6289 0.6962 0.2234 0.051* C19 0.2732 (3) 0.46827 (18) 0.05867 (14) 0.0331 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C20	0.1150 (3)	0.32712 (18)	0.04029 (14)	0.0338 (4)
O1W	0.2082 (2)	0.51934 (15)	0.30069 (13)	0.0469 (4)
H1WA	0.107 (3)	0.494 (3)	0.3146 (19)	0.056*
H1WB	0.262 (3)	0.6101 (18)	0.3185 (18)	0.056*
01	0.6879 (2)	0.96382 (15)	0.71523 (12)	0.0473 (4)
O2W	0.5101 (2)	0.24567 (16)	0.20164 (12)	0.0439 (4)
H2WA	0.612 (3)	0.297 (2)	0.2403 (16)	0.053*
H2WB	0.459 (3)	0.177 (2)	0.2261 (16)	0.053*
O2	0.7879 (2)	0.78107 (15)	0.68951 (12)	0.0440 (4)
O3	1.2212 (2)	1.02222 (18)	0.67190 (14)	0.0640 (6)
O3W	0.5827 (3)	1.18225 (16)	0.65623 (18)	0.0688 (6)
H3WA	0.632 (4)	1.129 (3)	0.680 (2)	0.083*
H3WB	0.471 (3)	1.149 (3)	0.659 (2)	0.083*
O4	0.84928 (19)	0.46805 (15)	0.32338 (12)	0.0449 (4)
O5	0.6043 (2)	0.52140 (18)	0.34392 (12)	0.0526 (5)
N1	0.9381 (2)	0.87521 (16)	0.56051 (13)	0.0361 (4)
N2	0.3998 (2)	0.52424 (16)	0.14566 (13)	0.0351 (4)
N3	0.0999 (2)	0.26257 (16)	0.11052 (13)	0.0390 (4)

Atomic displacement parameters (\AA^2)

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Mn1	0.03112 (19)	0.02749 (17)	0.0329 (2)	0.00883 (12)	0.00698 (15)	0.00713 (12)
C1	0.0513 (11)	0.0308 (8)	0.0417 (13)	0.0170 (8)	0.0180 (10)	0.0135 (8)
C2	0.0322 (9)	0.0295 (8)	0.0345 (12)	0.0102 (7)	0.0072 (8)	0.0069 (7)
C3	0.0390 (10)	0.0365 (9)	0.0403 (13)	0.0071 (8)	0.0112 (9)	0.0057 (8)
C4	0.0306 (9)	0.0466 (10)	0.0455 (14)	0.0107 (8)	0.0024 (9)	0.0055 (9)
C5	0.0340 (9)	0.0377 (9)	0.0433 (13)	0.0132 (8)	0.0079 (9)	0.0079 (8)
C6	0.0318 (9)	0.0330 (8)	0.0348 (12)	0.0092 (7)	0.0055 (8)	0.0098 (8)
C7	0.0331 (9)	0.0334 (8)	0.0360 (12)	0.0088 (7)	0.0066 (8)	0.0118 (8)
C8	0.0336 (9)	0.0343 (8)	0.0361 (12)	0.0094 (7)	0.0079 (8)	0.0094 (8)
C9	0.0537 (13)	0.0374 (10)	0.0535 (17)	-0.0012 (9)	0.0010 (12)	0.0158 (10)
C10	0.0565 (14)	0.0399 (11)	0.066 (2)	-0.0090 (10)	-0.0065 (13)	0.0106 (12)
C11	0.0491 (12)	0.0441 (11)	0.0491 (17)	0.0073 (9)	-0.0067 (11)	-0.0029 (10)
C12	0.0399 (10)	0.0406 (9)	0.0383 (13)	0.0177 (8)	0.0041 (9)	0.0038 (8)
C13	0.0523 (12)	0.0593 (13)	0.0370 (14)	0.0270 (11)	0.0037 (10)	0.0076 (10)
C14	0.0587 (13)	0.0624 (13)	0.0383 (14)	0.0315 (11)	0.0165 (11)	0.0235 (11)
C15	0.0467 (11)	0.0407 (9)	0.0425 (13)	0.0223 (9)	0.0184 (10)	0.0151 (9)
C16	0.0622 (14)	0.0437 (11)	0.0559 (16)	0.0202 (10)	0.0270 (12)	0.0265 (10)
C17	0.0540 (13)	0.0328 (9)	0.0608 (18)	0.0071 (9)	0.0225 (12)	0.0149 (10)
C18	0.0422 (10)	0.0306 (8)	0.0455 (15)	0.0061 (8)	0.0113 (10)	0.0039 (8)
C19	0.0364 (9)	0.0291 (8)	0.0360 (12)	0.0156 (7)	0.0120 (8)	0.0068 (7)
C20	0.0350 (9)	0.0301 (8)	0.0347 (12)	0.0144 (7)	0.0076 (8)	0.0050(7)
O1W	0.0401 (8)	0.0323 (6)	0.0712 (13)	0.0146 (6)	0.0243 (8)	0.0096 (7)
O1	0.0589 (9)	0.0417 (7)	0.0532 (11)	0.0275 (7)	0.0266 (8)	0.0131 (7)
O2W	0.0446 (8)	0.0401 (7)	0.0439 (11)	0.0140 (6)	0.0143 (7)	0.0084 (7)
O2	0.0562 (9)	0.0403 (7)	0.0529 (11)	0.0258 (6)	0.0295 (8)	0.0251 (7)
O3	0.0481 (9)	0.0496 (9)	0.0649 (14)	0.0037 (7)	0.0082 (8)	-0.0152 (8)

O3W	0.0591 (10)	0.0344 (7)	0.1180 (19)	0.0198 (7)	0.0337 (12)	0.0212 (9)	
O4	0.0352 (7)	0.0413 (7)	0.0505 (11)	0.0110 (6)	0.0120 (7)	0.0020 (7)	
05	0.0323 (7)	0.0601 (9)	0.0504 (11)	0.0180 (7)	0.0006 (7)	-0.0080 (8)	
N1	0.0384 (8)	0.0304 (7)	0.0386 (11)	0.0108 (6)	0.0135 (7)	0.0104 (7)	
N2	0.0344 (8)	0.0282 (7)	0.0383 (11)	0.0085 (6)	0.0113 (7)	0.0058 (6)	
N3	0.0376 (8)	0.0286 (7)	0.0411 (11)	0.0059 (6)	0.0063 (8)	0.0085 (7)	
Geometric paran	neters (Å, °)						
Mn1—O5		2.0761 (14)	C	10—C11	1.3	348 (4)	
Mn1—O2 ⁱ		2.1066 (15)	C	10—H10	0.9	9300	
Mn1—O1W		2.1643 (15)	C	11—C12	1.4	409 (3)	
Mn1—N2		2.2768 (18)	C	1—H11	0.9	9300	
Mn1—N3		2.2788 (17)	C	2—C20	1.4	411 (3)	
Mn1—O2W		2.3237 (17)	C	12—C13	1.4	428 (3)	
C1—N1		1.454 (3)	C	13—C14	1.3	341 (3)	
C1—C2		1.518 (3)	C	I3—H13	0.9	9300	
C1—H1A		0.9700	Cl	14—C15	1.4	136 (3)	
C1—H1B		0.9700	Cl	14—H14	0.9	9300	
C2—O1		1.245 (2)	C	15—C19	1.3	394 (3)	
C2—O2		1.254 (2)	C	15—C16	1.4	1.411 (3)	
C3—O3		1.251 (2)	C	16—C17	1.3	370 (4)	
C3—N1		1.391 (3)	C	16—H16	0.9	9300	
C3—C4		1.423 (3)	Cl	17—C18	1.3	390 (3)	
C4—C5		1.356 (3)	Cl	17—H17	0.9	9300	
C4—H4		0.9300	C	18—N2	1.3	327 (2)	
C5—C6		1.423 (3)	C	18—H18	0.9	9300	
C5—H5		0.9300	C	19—N2	1.3	361 (3)	
C6—C7		1.352 (3)	C	19—C20	1.4	144 (2)	
C6—C8		1.503 (3)	C	20—N3	1.3	348 (3)	
C7—N1		1.356 (2)	0	IW—H1WA	0.8	331 (16)	
С7—Н7		0.9300	0	IW—H1WB	0.8	322 (15)	
C8—O4		1.240 (3)	02	2W—H2WA	0.8	307 (16)	
C8—O5		1.267 (2)	O2	2W—H2WB	0.8	356 (16)	
C9—N3		1.324 (2)	02	$2-Mn1^1$	2.1	066 (15)	
C9—C10		1.401 (3)	0.	3W—H3WA	0.8	333 (17)	
С9—Н9		0.9300	0.	3W—H3WB	0.8	333 (17)	
O5—Mn1—O2 ⁱ		105.32 (7)	C	10—C11—C12	11	9.5 (2)	
O5—Mn1—O1W		89.47 (6)	C	10—C11—H11	12	0.2	
O2 ⁱ —Mn1—O1W	7	90.24 (6)	C	12—C11—H11	12	0.2	
O5—Mn1—N2		90.90 (7)	C	11—C12—C20	11	6.6 (2)	
$O2^{i}$ —Mn1—N2		163.71 (6)	C	11—C12—C13	12	3.4 (2)	
01W—Mn1—N2		88.34 (7)	C	20—C12—C13	12	0.00 (19)	
O5—Mn1—N3		162.47 (8)	C	14—C13—C12	12	1.1 (2)	
$\Omega^{2^{i}}$ Mn1 N2		91.35 (6)	C	4—C13—H13	11	9.5	
$01W _ Mn1 _ N3$		95 98 (7)	C	2	11	9 5	
N2_Mn1_N3		72.68 (6)		13-C14-C15	11	0.6 (2)	
05—Mn1—02W		85.20 (6)	C	I3-C14-H14	11	9.7	
			e		11		

O2 ⁱ —Mn1—O2W	89.67 (6)	C15—C14—H14	119.7
O1W—Mn1—O2W	174.44 (6)	C19—C15—C16	117.6 (2)
N2—Mn1—O2W	93.29 (6)	C19—C15—C14	120.02 (19)
N3—Mn1—O2W	89.58 (6)	C16—C15—C14	122.4 (2)
N1—C1—C2	112.73 (16)	C17—C16—C15	118.7 (2)
N1—C1—H1A	109.0	С17—С16—Н16	120.7
C2—C1—H1A	109.0	С15—С16—Н16	120.7
N1—C1—H1B	109.0	C16—C17—C18	119.7 (2)
C2—C1—H1B	109.0	С16—С17—Н17	120.1
H1A—C1—H1B	107.8	С18—С17—Н17	120.1
O1—C2—O2	126.3 (2)	N2-C18-C17	123.2 (2)
O1—C2—C1	116.48 (17)	N2—C18—H18	118.4
O2—C2—C1	117.18 (19)	C17—C18—H18	118.4
O3—C3—N1	118.6 (2)	N2—C19—C15	123.24 (17)
O3—C3—C4	126.2 (2)	N2—C19—C20	117.09 (18)
N1—C3—C4	115.20 (17)	C15—C19—C20	119.66 (18)
C5—C4—C3	122.79 (19)	N3—C20—C12	123.26 (18)
C5—C4—H4	118.6	N3—C20—C19	118.13 (17)
C3—C4—H4	118.6	C12—C20—C19	118.59 (19)
C4—C5—C6	119.4 (2)	Mn1—O1W—H1WA	128.8 (17)
С4—С5—Н5	120.3	Mn1—O1W—H1WB	122.9 (17)
С6—С5—Н5	120.3	H1WA—O1W—H1WB	108 (2)
C7—C6—C5	117.71 (18)	Mn1—O2W—H2WA	96 (2)
C7—C6—C8	119.05 (17)	Mn1—O2W—H2WB	93.0 (18)
C5—C6—C8	123.23 (19)	H2WA—O2W—H2WB	104 (2)
C6—C7—N1	122.87 (18)	$C2-O2-Mn1^{i}$	134.18 (16)
С6—С7—Н7	118.6	H3WA—O3W—H3WB	104 (2)
N1—C7—H7	118.6	C8—O5—Mn1	140.26 (15)
O4—C8—O5	124.86 (19)	C7—N1—C3	121.96 (18)
O4—C8—C6	120.83 (18)	C7—N1—C1	119.42 (17)
O5—C8—C6	114.31 (19)	C3—N1—C1	118.32 (17)
N3—C9—C10	122.1 (2)	C18—N2—C19	117.50 (19)
N3—C9—H9	118.9	C18—N2—Mn1	126.40 (15)
С10—С9—Н9	118.9	C19—N2—Mn1	116.08 (12)
C11—C10—C9	120.2 (2)	C9—N3—C20	118.22 (18)
C11—C10—H10	119.9	C9—N3—Mn1	125.89 (16)
С9—С10—Н10	119.9	C20—N3—Mn1	115.89 (12)
N1—C1—C2—O1	178.22 (17)	N2—Mn1—O5—C8	-84.9 (3)
N1—C1—C2—O2	-2.5 (3)	N3—Mn1—O5—C8	-64.8 (4)
O3—C3—C4—C5	-179.9 (3)	O2W—Mn1—O5—C8	8.3 (3)
N1—C3—C4—C5	-0.4 (3)	C6-C7-N1-C3	-2.2 (3)
C3—C4—C5—C6	0.0 (4)	C6C7	-175.7 (2)
C4—C5—C6—C7	-0.6 (3)	O3—C3—N1—C7	-179.1 (2)
C4—C5—C6—C8	178.7 (2)	C4—C3—N1—C7	1.5 (3)
C5—C6—C7—N1	1.6 (3)	O3—C3—N1—C1	-5.4 (3)
C8—C6—C7—N1	-177.63 (18)	C4—C3—N1—C1	175.09 (19)
C7—C6—C8—O4	172.8 (2)	C2—C1—N1—C7	87.7 (2)
C5—C6—C8—O4	-6.4 (3)	C2-C1-N1-C3	-86.1 (2)

C7—C6—C8—O5	-6.9 (3)	C17—C18—N2—C19	-0.3 (3)
C5—C6—C8—O5	173.9 (2)	C17—C18—N2—Mn1	-178.77 (18)
N3—C9—C10—C11	-1.5 (5)	C15-C19-N2-C18	1.4 (3)
C9—C10—C11—C12	0.2 (5)	C20-C19-N2-C18	-177.59 (18)
C10-C11-C12-C20	0.3 (4)	C15-C19-N2-Mn1	-179.97 (16)
C10-C11-C12-C13	-177.8 (3)	C20-C19-N2-Mn1	1.1 (2)
C11—C12—C13—C14	176.6 (2)	O5-Mn1-N2-C18	-9.93 (18)
C20-C12-C13-C14	-1.5 (4)	O2 ⁱ —Mn1—N2—C18	164.7 (2)
C12—C13—C14—C15	1.3 (4)	O1W—Mn1—N2—C18	79.51 (18)
C13-C14-C15-C19	0.2 (3)	N3—Mn1—N2—C18	176.30 (19)
C13-C14-C15-C16	-179.3 (2)	O2W—Mn1—N2—C18	-95.17 (18)
C19—C15—C16—C17	-0.7 (3)	O5—Mn1—N2—C19	171.54 (14)
C14—C15—C16—C17	178.9 (2)	O2 ⁱ —Mn1—N2—C19	-13.9 (3)
C15—C16—C17—C18	1.7 (4)	O1W—Mn1—N2—C19	-99.02 (14)
C16—C17—C18—N2	-1.3 (4)	N3—Mn1—N2—C19	-2.23 (13)
C16-C15-C19-N2	-0.9 (3)	O2W—Mn1—N2—C19	86.30 (14)
C14—C15—C19—N2	179.6 (2)	C10-C9-N3-C20	2.0 (4)
C16—C15—C19—C20	178.02 (19)	C10-C9-N3-Mn1	-177.0 (2)
C14—C15—C19—C20	-1.5 (3)	C12—C20—N3—C9	-1.4 (3)
C11—C12—C20—N3	0.2 (3)	C19—C20—N3—C9	176.9 (2)
C13—C12—C20—N3	178.5 (2)	C12-C20-N3-Mn1	177.73 (16)
C11—C12—C20—C19	-178.11 (19)	C19—C20—N3—Mn1	-3.9 (2)
C13—C12—C20—C19	0.1 (3)	O5—Mn1—N3—C9	161.2 (2)
N2-C19-C20-N3	1.9 (3)	O2 ⁱ —Mn1—N3—C9	-0.9 (2)
C15-C19-C20-N3	-177.08 (18)	O1W—Mn1—N3—C9	-91.3 (2)
N2-C19-C20-C12	-179.65 (18)	N2—Mn1—N3—C9	-177.7 (2)
C15—C19—C20—C12	1.4 (3)	O2W—Mn1—N3—C9	88.7 (2)
O1—C2—O2—Mn1 ⁱ	17.7 (3)	O5—Mn1—N3—C20	-17.9 (3)
C1—C2—O2—Mn1 ⁱ	-161.47 (15)	O2 ⁱ —Mn1—N3—C20	179.98 (15)
O4—C8—O5—Mn1	1.0 (4)	O1W—Mn1—N3—C20	89.60 (15)
C6—C8—O5—Mn1	-179.30 (18)	N2—Mn1—N3—C20	3.23 (14)
O2 ⁱ —Mn1—O5—C8	96.6 (3)	O2W—Mn1—N3—C20	-90.35 (15)
O1W—Mn1—O5—C8	-173.3 (3)		
Symmetry codes: (i) $-x+1, -y+1, -z+1$.			

Hydrogen-bond geometry (Å, °)

D—H··· A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A		
O1W—H1WA···O4 ⁱⁱ	0.831 (16)	1.967 (18)	2.773 (2)	163 (3)		
O1W—H1WB···O3W ⁱⁱⁱ	0.822 (15)	1.920 (15)	2.730 (2)	169 (3)		
O2W—H2WA···O4	0.807 (16)	1.998 (15)	2.783 (2)	164 (2)		
O2W—H2WA···O5	0.807 (16)	2.57 (3)	2.984 (2)	114 (2)		
O2W—H2WB···O1 ⁱ	0.856 (16)	1.959 (16)	2.806 (2)	170 (3)		
O3W—H3WA…O1	0.833 (17)	1.962 (19)	2.775 (2)	165 (3)		
Symmetry codes: (ii) $x-1$, y , z ; (iii) $-x+1$, $-y+2$, $-z+1$; (i) $-x+1$, $-y+1$, $-z+1$.						

Fig. 2